Extracellular Neutral Lipids Produced by the Marine Bacteria Marinobacter sp.
نویسندگان
چکیده
منابع مشابه
Green extracellular synthesis of the Fe2O3 nanoparticles by a native marine bacterium, Alcaligenes sp. strain NV06
This study investigated the potential of aquatic bacteria for their ability as a biocatalyst to synthesized Fe2O3 nanoparticles using iron precursor, FeCl3. A total of 25 aquatic bacterial strains were isolated in trypticase soy agar plus 10 mM FeCl3 with selective enrichment technique. Among the bacterial strains evaluated, NV06 was the only strain able to synthesize Fe2O3 nanoparticles extrac...
متن کاملExtracellular enzymes produced by marine eukaryotes, thraustochytrids.
Extracellular enzymes produced by six strains of thraustochytrids, Thraustochytrium, Schizochytrium, and Aurantiochytrium, were investigated. These strains produced 5 to 8 kinds of the extracellular enzymes, depending on the species. Only the genus Thraustochytrium produced amylase. When insoluble cellulose was used as substrate, cellulase was not detected in the six strains of thraustochytrids...
متن کاملMarinobacter salarius sp. nov. and Marinobacter similis sp. nov., Isolated from Sea Water
Two non-pigmented, motile, Gram-negative marine bacteria designated R9SW1T and A3d10T were isolated from sea water samples collected from Chazhma Bay, Gulf of Peter the Great, Sea of Japan, Pacific Ocean, Russia and St. Kilda Beach, Port Phillip Bay, the Tasman Sea, Pacific Ocean, respectively. Both organisms were found to grow between 4 °C and 40 °C, between pH 6 to 9, and are moderately halop...
متن کاملMarinobacter sp. from marine sediments produce highly stable surface-active agents for combatting marine oil spills
BACKGROUND The application of chemical dispersants as a response to marine oil spills is raising concerns related to their potential toxicity also towards microbes involved in oil biodegradation. Hence, oil spills occurring under marine environments necessitate the application of biodispersants that are highly active, stable and effective under marine environment context. Biosurfactants from ma...
متن کاملIdentification of the Antibacterial Compound Produced by the Marine Epiphytic Bacterium Pseudovibrio sp. D323 and Related Sponge-Associated Bacteria
Surface-associated marine bacteria often produce secondary metabolites with antagonistic activities. In this study, tropodithietic acid (TDA) was identified to be responsible for the antibacterial activity of the marine epiphytic bacterium Pseudovibrio sp. D323 and related strains. Phenol was also produced by these bacteria but was not directly related to the antibacterial activity. TDA was sho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biocontrol Science
سال: 2012
ISSN: 1342-4815,1884-0205
DOI: 10.4265/bio.17.69